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Previous Technical Reports to the Office of Naval Researc

1.

A. J. Durelli, "Development of Experimental Stress Analysis Methods to
Determine Stresses and Strains in Solid Propellant Grains''--June 1962.

n the manufacturing of grain-propellant models are

Developments i
a) cementing routed layers and

reported. Two methods are given:
b) casting.

A. J. Durelli and V. J. Parks, 'New Method to Determine Restrained

Shrinkage Stresses in Propellant Grain Mcdels'--October 1962.

The birefringence exhibited in the curing process of a partially
restrained polyurethane rubber is used to determine the stress associated
with restrained shrinkage in models of solid propellant grains partially

bonded to the case.

A. J. Durelli, "Recent Advances in the Application of Photoelasticity in
the Missile Industry"--October 1962.

Two- and three-dimensional photoelastic analysis of grains loaded by
pressure and by temperature are presented. Scme applications to the
optimization of fillet contours and to the redesign of case joints are

also included.

A. J. Durelli and V. J. Parks, "Experimental Solution of Some Mixed
Boundary Value Problems'--April 1964.

Means of applying known displacements and known stresses to the boundaries
of models used in experimental stress analysis are given. The applica-
tion of some of these methods to the analysis of stresses in the field

of solid propellant grains is illustrated. The presence of the "pinching

effect" is discussed.

A. J. Durelli, "Brief Review of the State of the Art and Expected Advance
in Experimental Stress and Strain Analysis of Solid Propellant Grains'--
April 1964.

A brief review is made of the state of the experimental stress and strain
analysis of solid propellant grains. A discussion of the prospects for J

the next fifteen years is added.

A. J. Durelli, "Experimental Strain and Stress Analysis of Solid Propellant

Rocket Motors''--March 1965.
A review is made of the experimental methods used to strain-analyze solid

propellant rocket motor shells and grains when subjected to different
loading conditions. Methods directed at the determination of strains in

actual rockets are included.

L. Ferrer, V. J. Parks and A. J. Durelli, "An Experimental Method to Analyze

Gravitational Stresses in Two-Dimensional Problems'--October 1965.
Photoelasticity and moiré methods are used to solve two-dimensional problems

in which gravity-stresses are present.
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10.

11.

12.

13.

14,

13.

A. J. Durelii, V. J. Parks and C. Jj. del Rio, "Stresses in a Square Slab
Bonded on One Face co a Rigid Plate and Shrunk"--November 1965.

A square epoxy slab was bonded to a rigid plate on one of its faces in
the process of curing. In the same process the photoelastic effects
associated with a state of restrained shrinkage were "frozen-in."
Three-dimensional photoelasticity was used in the analysis.

A. J. Durelli, V. J. Parks and C. J. del Rio, "Experimental Determination
of Stresses and Displacements in Thick-Wall Cylinders of Complicated

Shape'--April 1966€.
Photoelasticity and moiré are used to analyze a three-dimensional rocket

shape with a star shaped core subjected to internal pressure.

V. J. Parks, A. J. Durelli and L. Ferrer, "Gravitational Stresses

Determined Using Immersion Techniques'--July 1966.
The methods presented in Technical Report No. 7 above are extended to
+rhree-dimensions. Immersion is used to increase response.

A. J. Durelli and V. J. Parks. "Experimental Stress Analysis of Loadecd
Boundaries in Two-Dimensional Second Boundary Value Problems''--

February 1967.
The pinching effect that occurs in two-dimensional bonding problems,

noted in Reports 2 and 4 above, is analyzed in some detail.

A. J. Durelli, V. J. Parks, H. C. Feng and F. Chiang, ""Strains and

Stresses in Matrices with Inserts,'-- May 1967.
Stresses and strains along the interfaces, and near the fiber ends, for

different fiber end configurations, are studied in detail.

A. J. Durelli, V. J. Parks and S. Uribe, "Optimization of a Slot End
Configuration in a Finite Plate Subjected to Uniformly Distributed

Load,"--June 1967.
wo-dimensional photoelasticity was used to study various elliptical ends

to a slot, and determine which would give the lowest stress concentration
for a load normal to the slot length.

A. J. Durelli, V. J. Parks and Han-Chow Lee, "Stresses in a Split
Cylinder Bonded to a Case and Subjected to Restrained Shrinkage,'--

January 1968.
A three-dimensional photoelastic study that describes a method and

shows results for the stresses on the free boundaries and at the
bonded interface of a solid propellant rocket.

A. J. Durelli, "Experimental Stress Analysis Activities in Selected

European Laboratories'--August 1968.

This report has been written following a trip conducted by the author
through several European countries. A list is given of many of the
laboratories doing important experimental stress analysis work and of
the people interested in this kind of work. An attempt has been made
+0 abstract the main characteristics of the methods used in some of

the countries visited.
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17.

18.

13.

20.

21.

22.

23.

! "Constant Acceleration Stresses

v. J. Parks, A. J. Durelli and L. Ferrer,

in a Composite Body'--October 1968.
Use of the immersion analogy to determine gravitational stresses in

two-dimensional bodies made of materials with different properties.

A. J. Durelli, J. A. Clark and A. Kochev, '"Experimental Analysis of High
Frequency Stress Waves in a Ring'"--October 1968.

A method for the complete experimental determination of dynamic stress
distributions in a ring is demonstrated. Photoelastic data is supple-
mented by measurements with a capacitance gage used as a dynamic lateral

extensometer.

J. A. Clark and A. J. Durelli, "A Modified Method of Holographic Inter-
ferometry for Static and Dymamic Photoelasticity'--April 1968.
A simplified absolute retardation approach to photoelastic analysis is

described. Dynamic isopachics are presented.

J. A. Clark and A. J. Durelli, "Photoelastic Analysis of Flexural Waves
in a Bar"--May 19689.

A complete direct, full-field optical determination of dynamic stress
distribution is illustrated. The method is applied to the stuay of
flexural waves propagating in a urethane rubber bar. Results are
compared with approximate theories of flexural waves.

J. A. Clark and A. J. Durelli, "Optical Analysis of Vibrations in
Continuous Media'--June 1969.

Optical methods of vibration analysis are described which are independent
of assumptions associated with theories of wave propagation. Methods are
jllustrated with studies of transverse waves in prestressed bars, snap
loading of bars and motion of a fluid surrounding a vibrating bar.

V. J. Parks, A. J. Durelli, K. Chandrashekhara and T. L. Chen, "Stress
Distribution Around a Circular Bar, with Flat and Spherical Ends,

Embedded in a Matrix in a Triaxial Stress Field"--July 1969.

A Three-dimensional photoelastic method to determine stresses in composite
materials is applied to this basic shape. The analyses of models with
different loads are combined to obtain stresses for the triaxial cases.

A. J. Durelli, V. J. Parks and L. Ferrer, "Stresses in Solid and Hollcw
Spheres Subjected to Gravity or to Normal Surface Tractions'--

October 1969.
The method described in Report No. 10 above is applied to two specific

problems. An approach is suggested to extend the solutions to a class
of surface traction problems.

-

Je
Moiré Patterns''--December 1969.
A spatial filtering technique for adding and subtracting images of several

gratings is described and employed to determire the whole field of
Cartesian shears and rigid rotations.

A. Clark and A. J. Durelli, "Separation of Additive and Subtractive

iv




24, R. .J. Sanford ard A. J. Durelli, "Interpretaticn of Fringes in Stress-
tiolo-Interfaromerry'--Tuly 1379.

Errors associated with interpreting stress-holo-Interferometry vpatterns
as the supercocition of isopachics (with nalf order fringe shifts) and
isochromatics are analyzed theoretically and illustrated with computer

zenerated holographic interference patterns.
P. A. Laura, "On the Effect of Initial

25. J. A. Clark, A. J. Durelli and P.
Stress on the Propagation of Flexural Waves in Elastic Rectangular

Bars'--December 13793.

Experimental analysis of the propagation of flexural waves in prismatic,
elastic bars with and without prestressing. The effects of prestressing
by axial tension, axial compression and pure bending are illustrated.

2

. A. J. Durelli and J. A. Clark, "Experimental Analysis of Stresses in
! Buoy-Cable System Using a Birefringent Fluid"--February 1971.
thod of photoviscous analvsis is presented which

An extension of the met
permits quantitative studies of strains associated with steady state

vibrations of immersed structures. The method is applied in an
investigation of one form of behavior of buoy-cable svstems loaded by

~N
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the action of surface waves.

A. J. Durelli and T. L. Chen, "Displacements and Finite-Strain Fields in

to Large Deformations"--February 1972.

(ranging from 0.001 to 0.50) are determined in

d to several levels of diametral compression.
of the

The max:imum

27.
a Sphere Subjected
Displacements and strains

a polyurethane sphere subjecte
A 500 lines-per-inch grating was embedded in a meridian plane

sphere and moiré effect produced with a non-deformed master.
applied vertical displacement reduced the diameter of the sphere by 27

per cent.

A. J. Durelli and S. Machida, "itresses and Strain in a Disk with Variable

Modulus of Elasticity'--March 1972

A transparent material with variable modulus of elasticity has been

¥ manufactured that exhibits good photoelastic properties and can also be
strain analyzed by moiré. The results obtained suggests that the stress
distribution in the disk of variable E is practically the same as the
stress distribution in the homogeneous disk. It also indicates that the
strain fields in both cases are very different, but that it is possible,
approximately, to obtain the stress field from the strain field using the

value of E at every point, and Hooke's law.

28.

29. A. J. Durelli and .J. Buitrago, 'State of Stress and Strain in a Rectangular
Belt Pulled Over a Cylindrical Pulley'--June 1972.
Two- and three-dimensional photoelasticitv as well as electrical strain
gages, dial gapes and micrometers are used to determine the stress distri-
bution in a belt-pulley system. Contact and tangential stress for various
contact angles and friction coefficients are piven.




30.

31.

32.

33.

34,

35.

36.

T. L. Chen and A. J. Durelli, "Stress Field in a Sphere Subiected to

Large Deformations'--June 1972,

Strain fields obtained in a sphere subjected to large diametral compressions
from a previous paper were converted into stress fields using two approaches.
First, the concept of strain-energy function for an isotropic elastic

body was used. Then the stress field was determined with the Hookean

type natural stress-natural strain relation. The results so obtained

were also compared.
A. J. Durelli, V. J. Parks and H. M. Hasseem, "Helices Under Load"--

July 1973.
Previous solutions for the case of close coiled helical springs and for

nelices made of thin bars are extended. The complete solution is
presented in graphs for the use of designers. The theoretical development

is correlated with experiments.

T. L. Chen and A. J. Durelli, "Displacements and Finite Strain Fields in
a Hollow Sphere Subjected to Large Elastic Deformations'"--September 1973.

The same methods described in No. 27, were applied to a hollow sphere
with an inner diameter one half the outer diameter. The hollow sphere
was loaded up to a strain of 30 per cent on the meridian plane and a

reduction of the diameter by 20 per cent.

A. J. Durelli, H. H. Hasseem and V. J. Parks, ''New Experimental Method
in Three-Dimensional Elastostatics'"--December 1973.

A new material is reported which is unique among three-dimensional
stress-freezing materials, in that, in its heated (or rubbery) state
it has a Poisson's ratio which is appreciably lower than 0.5. TFor a
loaded model, made of this material, the unique property allows the
direct determination of stresses from strain measurements taken at

interior points in the model.

J. Wolak and V. J. Parks, “Evaluation of Large Strains in Industrial

Applications'--April 1974.

It was shown that Mohr's circle permits the transformation of strain from
one axis of reference to another, irrespective of the magnitude of the
strain, and leads to the evaluation of the principal strain components

from the measurement of direct strain in three directions.

A. J. Durelli, "Experimental Stress Analysis Activities in Selected

European Laboratories'--April 197S.
Continuation of Report No. 15 after a visit to Belgium, Holland, Germany,

France, Turkey, England and Scotland.
A. J. Durelli, V. J. Parks and J. 0. Biihler-Vidal, "Linear and Noa-linear
Elastic and Plastic Strains in a Plate with a Big Hole Loaded Axially in

its Plane'"--July 1975.
Strain analysis of the ligament of a plate with a big hole indicates that

both geometric and material non-linearity may take place. The strain
concentration factor was found to vary from 1 to 2 depending on the level

of deformation.
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37.

38.

39

Lo.

41.

42.

u3,

Ly,

A. J. Durelli, V. Pavlian, J. 0. Blihler-vidal and G. Ome, "Elastostatics

of a Cubic Box Subjected to Concentrated Loads''--August 1975.
Analysis of experimental strain, stress and deflection of a cubic box
subjected to concentrated loads applied at the center of two opposite

faces. The ratio between the inside span and the wall thickness was
varied between approximately 5 and 121.

A. J. Durelli, V. J. Parks and J. 0. Biihler-Vidal, "Elastostatics of
Cubic Boxes Subjected to Pressure'--March 1376.

txperimental analysis of strain, stress and deflections in a cubic box
subjected to either internal or external pressure. Inside span-to-wall

thickness ratio varied from 5 to 1lu.

Y. Y. Hung, J. D. Hovanesian and A. J. Durelli, "New Optical Method to
Determine Vibration-Induced Strains with Variable Sensitivity After

Recording'--Novemper 1976.
A steady state vibrating object is illuminated with coherent light and

its image slightly misfocused. The resulting specklegram is "time~
integrated" as when Fourier filtered gives derivatives of the vibrational

amplitude.

Y. Y. Hung, C. Y. Liang, J. D. Hovanesian and A. J. Durelli, "Cyclic
Stress Studies by Time-Averaged Photoelasticity'--November 1976.
"Time-averaged isochromatics" are formed when the photographic film is
exposed for more than one period. Fringes represent amplitudes of the
oscillating stress according to the zeroth order Bessel function.

Y. Y. Hung, C. Y. Liang, J. D. Hovanesian and A. J. Durelli, "Time-
Averaged Shadow Moiré Method for Studying Vibrations'--November 1976.
Time-averaged shadow moiré permits the determination of the amplitude
distribution of the deflection of a steady vibrating plate.

J. Buitrago and A. J. Durelli, "On the Interpretation of Shadow-Moiré
Fringes'--April 1977.

Possible rotations and translations of the grating are considered in a
general expression to interpret shadow-moiré fringes and on the
sensitivity of the method. Application to an inverted perforated tube.

J. der Hovanesian, ""18th Polish Solid Mechanics Conference.'" Published in
European Scientific Notes of the Office of Naval Research, in London,
England, Dec. 31, 1976.

Comments on the planning and organization of, and scientific content of
paper prasented at the 18th Polish Solid Mechanics Conference held in

Wisla-Jawornik from September 7-14, 1976.

A. J. Durelli, "The Difficult Choice,'"--May 1977.
The advantages and limitations of methods available for the analyses

of displacements, strain, and stresses are considered. Comments are
made on several theoretical approaches, in particular approximate
methods, and attention is concentrated on experimental methods:
elasticity, moiré, brittle and photoelastic coatings, gages, grids,
holography and speckle to solve two- and three-dimensional problems in

elasticity, plasticity, dynamics and anisotropy.
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45.

46.

47.

48.

C. Y. Liang, Y. Y. Hung, A. J. Durelli and J. D. Hovanesian,

"Direct Determination of Flexural Strains in Plates Using Projected
Gratings,'--June 1977.

The method requires the rotation of one photograph of the deformed
grating over a copy of itself. The moiré produced yields strains by
optical double differentiation of deflections. Applied to projected
gratings the idea permits the study of plates subjected to much larger
deflections than the ones that can be studied with holograms.

A. J. Durelli, K. Brown and P. Yee, "Optimization of Geometric
Discontinuities in Stress Fields'"--March 1978.

The concept of "coefficient of efficiency" is introduced to evaluate
the degree of optimizatiom. An ideal design of the inside boundary of
a tube subjected to diametral compression is developed which decreases
its maximum stress by 25%, at the time it also decreases its weight by
10%. The efficiency coefficient is increased from 0.59 to 0.95.

Tests with a brittle material show an increase in strength of 20%Z. An
ideal design of the boundary of the hole in a plate subjected to axial
load reduces the maximum stresses by 26% and increases the coefficient

of efficiency from 0.54 to 0.90.

J. D. Hovanesian, Y. Y. Hung and A, J. Durelli, "New Optical Method

to Determine Vibration-Induced Strains With Variable Sensitivity After
Recording''--May 1978.

A steady-state vibrating object is illuminated with coherent light and
its image is slightly misfocused in the film plane of a camera. The
resulting processed film is called a "time-integrated specklegram."

When the specklegram is Fourier filtered, it exhibits fringes depicting
derivatives of the vibrational amplitude. The direction of the spatial
derivative, as well as the fringe sensitivity may be easily and continu-
ously varied during the Fourier filtering process. This new method is
also much less demanding than holographic interferometry with respect to
vibration isolation, optical set-up time, illuminating source coherence,

required film resolution. etc.

Y. Y. Hung and A. . Durelli, "t imultanecus Determination of Three
Strain Components in Speckle Interferometry Using a Multiple Image
Shearing Camera,''--September 1978

This paper describes a multiple image-shearing camera.
coherent light illumination, the camera serves as a multiple shearing
speckle interferometer which measures the derivatives of surface
displacements with respect to three directions simultaneously. The
application of the camera to the study of flexural strains in bent

plates is shown, and the determination of the complete state of two-
The multiple image-shearing

Incorporating

dimensional strains is also considered.
camera uses an interference phenomena, but is less demanding than

holographic interferometry with respect to vibration isolation and the
coherence of the light source. It is superior to other speckle
techniques in that the obtained fringes are of much better quality.
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49.

50.

A. J. Durelli and K. Rajaiah, "Quasi-square Hole With Optimum Shape
in an Infinite Plate Subjected to In-plane Loading''--January 1979.
This paper deals with the optimization of the shape of the corners
and sides of a square hole, located in a large plate and subjected
to in-plane loads. Appreciable disagreement has been found between
the results obtained previously by other investigators. Using an
optimization technique, the authors have developed a quasi-square
shape which introduces a stress concentration of only 2.54 in a
uniaxial field, the comparable value for the circular hole being 3.
The efficiency factor of the proposed optimum shape is 0.90. whereas
the one of the best shape developed previously was 0.71. The shape
also is developed that minimizes the stress concentration in the
case of biaxial loading when the ratio of biaxiality is 1l:-1.

A. J. Durelli and K. Rajaiah, "Optimum Hole Shapes in Finite Plates
Under Uniaxial Load,'--February 1979.

This paper presents optimized hole shapes in plates of finite width
subjected to uniaxial load for a large range of hole to plate widths
(D/W) ratios. The stress concentration factor for the optimized
holes decreased by as much as 44% when compared to circular holes.
Simultaneously, the area covered by the optimized hole increased

by as much as 26% compared to the circular hole. Coefficients of
efficiency between 0.91 and 0.96 are achieved. The geometries of
the optimized holes for the D/W ratios considered are presented in
a form suitable for use by designers. It is also suggested that
the developed geometries may be applicable to cases of rectangular
holes and to the tip of a crack. This information may be of
interest in fracture mechanics.
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DETERMINATION OF STRAINS IN PHOTOELASTIC COATINGS

by

A. J. Durelli and K. Rajaiah

ABSTRACT

Photoelastic coatings can be cemented directly to actual structural
components and tested under field conditions. This important advantage

has made them relatively popular in industry. The information obtained,

however, may be misinterpreted and lead to serious errors. A correct

interpretation requires the separation of the principal strains and so -
far, this operation has been found very difficult. Following a previous
paper by one of the authors, it is proposed to drill small holes in the
coating and record the birefringence at points removed from the edge of
the holes. The theoretical background of the method is reviewed; the
technique necessary to use it is explained and two applications are

described. The precision of the method is evaluated and found satisfactory

in contradiction to information previously published in the literature.




INTRODUCTION

Covering the surfaces of engineering structures with transparent
coatings and recording the changes in birefringence with a reflection
polariscrope, is the basis of a method that can find many applications.

The main advantages of the method are: 1) no model is required, 2} the
knowledge of the loading conditions is not necessary either, and 3) whole-
field information can be obtained. Besides the usual technical difficulties
that are common to all experimental methods (accurate machining, proper
cementing, correct recording, etc.) the method has some very serious limi-
tations. The first one of these limitations is the low sensitivity
associated with relatively thin coatings cemented to the commonly used
relatively rigid engineering materials. The second limitation is that,
although the information is available for the whole field, in general the
evaluation has to be done point-by-point not only for the directions of the
principal stresses but also for the maximum shear. A third important
limitation is the nature of the information that can be easily obtained,

as to be explained in what follows.

In the classic two-dimensional photoelasticity analysis, separation
of stresses is seldom required since most analyses are directed to the
determination of stress concentrations and these occur in plates most of
the time at free boundaries. This means that actually only a unidimensional
state of stress is solved. On the other hand, the surfaces of engineering
structures to be covered with coatings can be considered as in a state of
two-dimensional stress. The main implication of this situation is that
the maximum shears present at the surfaces are not necessarily the maximum

shears in the body, which are the ones of interest to the analyst and to

the designer. Wherever the two principal stresses %9 and 9 in the plane




-3~

are- of the same slpgn, (ql - qz)/2 does not represent the

of the carbaee
maximum shear stress at that point., The maximum principal shear stress is

01/2 or 02/2. The statement can be illustrated by also calling attention to
points of zero fringe order in photoelastic coatings. At these points, both
principal stresses are equal but both could have very large values. Therefore,
a point, or a zone, of apparently low stress may be actually subjected to a very
high shear on a plane off the coating. To bypass this difficulty, several
attempts have been made at separating the two principal stresses that take place
in the plane of the coating. This has been so far a very difficult task what-
ever the method to be used. In this paper, a method proposed by Tesar(l) and
modified by one of the authors many years ago(z) will be developed to transform
the coating into a situation similar to the one found in classic two-dimensional
photoelasticity for which the determinations are made at free boundaries. The

"strip" method is a similar method that has also been proposed, and a comparison

of the two methods will be made at the end of the paper.

PRINCIPLE OF THE METHOD

Instead of using a continuous coating, the coating will be perforated
with small circular holes of a diameter of the order of the thickness of
the coating and at a distance from each other sufficiently large to avoid
interference. This artifice creates free boundaries in the coating and at
these boundaries the stress is uniaxial and can be completely determined
in a direct manner.

(2)

In the previous publication , an analysis of the state of stress
around an empty circular hole in a thin plate subjected to any biaxial
condition of stress has been presented. The vroblem was completely solved,

the results shown in tabulated form and the following conclusions reached:

1) the direction of the principal stress in the structure can be obtained
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coatings and recording the changes in birefringence with a reflection
polariscrope, is the basis of a method that can find many applications.

The main advantages of the method are: 1) no model is required, 2) the
knowledge of the loading conditions is not necessary either, and 3) whole-
field information can be obtained. Besides the usual technical difficulties
that are common to all experimental methods (accurate machining, proper
cementing, correct recording, etc.) the method has some very serious limi-
tations. The first one of these limitations is the low sensitivity
associated with relatively thin coatings cemented to the commonly used
relatively rigid engineering materials. The second limitation is that,
although the information is available for the whole field, in general the
evaluation has to be done point-by-point not only for the directions of the
principal stresses but also for the maximum shear. A third important
limitation is the nature of the information that can be easily obtained,

as to be explained in what follows.

In the classic two-dimensional photoelasticity analysis, separation
of stresses is seldom required since most analyses are directed to the
determination of stress concentrations and these occur in plates most of
the time at free boundaries. This means that actually only a unidimensional
state of stress is solved. On the other hand, the surfaces of engineering
structures to be covered with coatings can be considered as in a state of
two-dimensional stress. The main implication of this situation is that
the maximum shears present at the surfaces are not necessarily the maximum
shears in the body, which are the ones of interest to the analyst and to

the designer. Wherever the two principal stresses %9 and % in the plane
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A

without the need of recording isoclinics in the coating by recording only
the axes of symmetry of the isochromatic pattern around the hole; 2) the
principal stresses can be determined by addition and subtraction of the
factored maximum and minimum values of the isochromatic fringes at the
edge of the hole; and 3) since frequently the fringe orders at the edges
of photoelastic materials are determined less precisely than those inside
the field, it was proposed that the measurements be taken at a distance
from the edge equal to the radius of the hole (r = 2a), rather than at the
edge of the hole. Equations have been given to compute the principal
stresses using these values. The above method has also been applied suc-

3)

cessfully to certain restrained shrinkage problems
Nisida et al (4)G) had considered the small hole drilling method

in the context of determining residual stresses. Their approach, which

uses only photoelastic information from the edges of the holes, shows such

large differences from theoretical values that the conclusion is reached

that the method is not applicable. The assumption is that near the hole

a "tnickness effect' does not permit a meaningful evaluation c¢f the strains.

The work reported here shows that much smaller differences occur.
It also shows that when the values are taken at r = 2a, the determination

of the principal strains can be sufficiently precise.

ADVANTAGES AND LIMITATIONS OF THE METFOD
The proposed method increases the response of the coating by from
2 to 4 orders of magnitude. It permits the direct deterrination of the

directions of the principal stresses without recording isoclinics. It gives

individual values of each of the principal stresses directly without supple-

mentary tests or major computations. The precision of the results obtained
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is higher. In many cases, photographic recording and use of monochromatic
light will be possible.

The method will require that the coating be perforated either before
cementing or after it has been cemented to the surface of the structure.
Errors may be introduced in zones of high gradients of stress since the

formulae used to interpret the results correspond to a uniform state of

stress.

ANALYSIS
! The direction of the principal stresses is given by the direction of
the two axes of symmetry of the fringe pattern around each hole.
The values of the principal stresses at the center of the hole, before

the hole was drilled, are given by(z):

o, = % (o

1 + 3°R)

A
1)

1
o, =g (304 * op)

where % and oy are the stresses at the intersection of the edge of the
hole with the axes of symmetry of the fringe pattern (Fig. 1).

To be more practical, the measurements can be taken on the two axes
of symmetry at a distance from the edge of the hole equal to the radius

of the hole (points C and F on r = 2a line). The equations to be used,

developed from the general equations of isochromatics in any biaxial stress
) are:

-

field around a circular hole, as given in




(150E + 7oC)

' 11
(2)
(150C + 70E)

o B ————

2 11

where % and op are principal stress differences at points C and E

respectively.

Coatings analyses are usually conducted in terms of strains. The

principal strains € and €y and (e1 - 62) can be determined from the stress-

strain relationships

i o, = Vo, o 0, = Vo,
1 E . 2 E
(3)
_ 1+
and €1 " € = TE (cl 02)

An
£y = €y & grie . nf (4)

where K is a material constant, n is the fringe order, tc is the thickness
of the coating, A is the wavelength of light used and fe(s A/ZtCK)
is the material strain fringe value.

From Eqs. (3) and (4)

f E

- . i e (5)

3 2 1+v

1
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On the edge of the hole, one of the principal stresses is zero;

then from Eq. (5) the stress o, tangential to the hole is:
fE
ot=ﬁ;n (6)

Thus, if the fringe orders at the two points of intersection of the
two axes of symmetry with the hole edge are determined along with their
sign, then Ty and op can be obtained from Eq. (6). % and o, are then
calculated from Eq. (1), and Eq. (3) gives € and €y

In the second approach, fringe orders at points C and E on the
r = 2a line are determined and Eq. (5) is used to obtain (o1 - 02) at
those points, which are % and Op - Using these values, Ea. (2) is used
to determine o, and Oy Sometimes doubts may exist about the signs to

1

be given to 9% and O It may be helpful to remember that the signs of

these stresses are the same as the signs of Op and op respectively for

all 01/02 < 0. For 01/02 > 0 in the ranges 7/15 > 01/02 > 1/3 aud

3 > 01/02 > 15717, ¢ has the opposite sign of 0, while op has the
same sign as Op: Outside these two short ranges, the signs of 9% and
OE are the same as those of OA and OB respectively. It may be practical

to determine the magnitude and sign of % and 9, first using the first
approach, and then improve the precision using the second approach.
Invariably, residual stresses may be expected to be present around
the hole edges due to absorption or release of moisture, differential
thermal expansion between the coating and the model, shrinkage of the
adhesive bond etc. The magnitude and the sign of this stress have to be

evaluated at the beginning of the test and they have to be properly accounted




for in the final analysis.

The method will be illustrated with two examples: 1) a circular
disk under diametral compression and 2) a circular ring also under

diametral compression.

COATING MATERIALS

The basic requirements of the method are the choice of a coating
material with high sensitivity and good reflective properties, introduction
‘ of small holes in the coating without creating machining stresses and a
suitable reflection polariscope.

Of the common materials, polycarbonates seem the best suited because
of their high sensitivity. Materials supplied by Photoelastic Inc. were

used because they were conveniently available. However, the reflective

coating supplied with "P:-1" appears very coarse on magnification and the
fringes are difficult to identify around the small holes. The epoxies
"PS-2" and "PS-8" were chosen and one of their surfaces was coated with
an aluminium undercoating and then bonded to the model with an adhesive.
This provided good reflective background. Unfortunately, these epoxies

are less sensitive than the polycarbonate.

INTRODUCTION OF SMALL HOLES
The thickness of the suitable coating varies usually from 0.07 in.
to 0.125 in. (1.78 mm to 3.18 mm). It was decided to choose the diameter

of the holes as 0.1 in. (2.5 mm).
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The machining of the hole was carried out in five stages of drilling
and two stages of reaming. A pilot hole of 0.031 in. (0.79 mm) diameter
was drilled first and it was progressively increased till the final
diameter was reached. In order to minimize the effect of the residual
stresses which may have been produced by the cement at the interface
between the coating and the body, and also (in case the holes have been
drilled before bonding) to prevent the adhesive from getting into the hole,
the depth of the hole was stopped at about 0.01 in. (0.25 mm) away from the
interface. These precautions lead to holes practically free from machining
stresses. If residual stresses have been produced by other causes like
exchange of moisture, variation in temperature, etc., they will show as
fringes around the holes and they have to be determined.

The edge of the holes were covered with non-reflective black paint
to avoid reflection and scattering of light. A drawback of this procedure

is that both light and dark fields appear with dark background in the hole.

THE POLARISCOPE I

As a consequence of the fact that the holes to be observed have only
0.1 in. (2.5 mm) in diameter, the polariscope to be used should have a

high resolution power and give, with precision, the details of the fringe

pattern around the edges. Incidence of light is not perpendicular to the
surface of the coating in the conventional reflection polariscopes. It
cannot be used among other reasons because it prcduces unacceptable shadows
around the hole edges. A new polariscope with a ring shaped light source,

(6)

similar to the one used by Slot , was designed and built around a ring

shaped Aristo monochromatic light source of 100 watts (Fig. 2). The light




source has about 5.5 in. (140 mm) external diameter and 1.75 in. (44.5 mm)

internal diameter. With this smaller central opening compared to about

4 in. (100 mm) of Slot's polariscope, it is possible to keep the light
source very close to the model (at a distance of say 12 in.) and still have
the light practically normal to the surface. The polariscope has both
plane and circular polarization capability as well as the ability to use

Tardy's method of compensation.

EXPERIMENTAL PROCEDURE

Epoxy plates 0.625 in. (15.9 mm) thick were chosen to make the ring
and disk. The diameter of the disk was 4 in. (102 mm). The internal diameter
of the ring was 4.5 in. (114 mm) and the external diameter was 9 in. (228 mm).
The coating on the disk was made of epoxy (PS-8) with t = 0.072 in. (1.8 mm).
The coatings on the ring were made of both epoxy (PS-2) with t = 0.082 in.
(2.1 mm) and polycarbonate (PS-1) (K = 0.16) with t = 0.125 in. (3.2 mm).

The coatings were bonded to the specimens and after proper curing,
small holes of 0.1 in. (2.5 mm) diameter were drilled as mentioned above,
at points at distances of 0.5 in. (12.7 mm) or 0.75 in. (19 mm) from each
other, and along radial lines. The specimens were then subjected to a
diametral compressive load.

The coating materials on the ring and the disk were calibrated with
measurements taken at several points on the horizontal axis of symmetry
using the known theoretical values. K values of 0.132 for PS-2 and 0.089

for PS-8 were obtained. E for the model material was determined as

480,000 Psi (3310 MPa).
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The birefringent response of the coating to residual as well as to

stresses associated with the loads was studied using the polariscope described

earlier. The fringe pattern around each of the holes was photographically ;
recorded and enlarged about 15 times for analysis. Fringes are sometimes I
only approximately symmetric. The two axes were marked on the photograph
and the fringe order distributions along the two axes were plotted. The
fringe orders at the hole edge were determined by extrapolating the curves,
and average of the values were obtained from both sides. The fringe values
at r = 2a along the two axes of symmetry were determined from the graph or
by compensation using Tardy's rethod and the device to be described later.
The circular ring with the two types of coating perforated by small
holes was subjected to a diametral compressive load of 714 1b. (3.24 kN).
The corresponding fringe pattern is shown in Fig. 3. The response of the
polycarbonate coating was higher; but the analysis could not be carried

out due to poor resolution. Only information from the epoxy coating

could be analyzed.

EXAMPLES

Consider the hole on the horizontal axis of symmetry (© = 0) of the
ring at a distance r/b = 0.61 from the center. The fringe pattern around
the hole under no load (only residual stresses) and under load are shown
in Figs. 4, 5 and 6 magnified several times.

Since the residual stresses around the hole are essentially isotropic
with an exponential decay from the edge, the log-log plot of fringe order
versus the radial distance from the edge will be a straight line. This

plot gives an accurate estimation of the residual stresses at any radial




distance (Fig. 7). The sign of the residual stress can be obtained by

using some compensators or by applying a load to the ring and observing
the motion of the fringe.

The fringe order distributions along the two axes of symmetry when
the ring is loaded are given in Fig. 8. The average of the distributions
along the horizontal axis of symmetry on both sides of the hole is used
for the calculations. The distributions along the vertical axis on the
upper and lower sides are symmetrical.

The principal strains at the selected points are determined using
the fringe order at the edge of the hole obtained from Fig. 8, and Egs. (1)
and (3). Since the hcle does not go all the way through the coating, in
the computations the depth of the hole was taken as the thickness of the
coating. Principal strains are also determined using the fringe order at
points located at r = 2a and using Egs. (2) and (3). The residual strains

obtained previously are subtracted from the total strains. The two sets

(7

of values so obtained are compared with those given by Timoshenko in

Table 1.

Using the same procedure, principal strains were determined at other
points in both a circular disk and the circular ring. Illustrations of
the patterns obtained for two other holes are presented in Figs. 9 and 10.

The compared values are included in Table 1 for some typical points.

DEVICE TO COMPENSATE AT THE DESIRED POINTS
When the strain level is low, the determination on the 2a line of
the value of the birefringence by compensation requires a precise location

of the points. It was observed that scribing of lines on the coating may
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distort the fringes. A simple circular device, as shown in Fig. 11, was

used to increase the precision of the determinations. With this device
plugged into the hole in the coating and each pair of holes in the device
aligned with each of the two axes of symmetry of the fringe pattern, it
was simple to locate the points and determine the fringe orders by
compensation with greater precision. Since the device is opaque,

extinction can be observed in high contrast.

DISCUSSION

The fringe pattern in Fig. 3 shows that the introduction of the small
holes does not disturb the overall fringe pattern and their effect is
confined to a small region in the immediate neighbourhood. The axes of
symmetry around the holes determines the direction of the principal stresses
without the need of recording isoclinics. The isochromatic patterns around
the holes in Figs. 4 to 10 show that there is sufficient information around
the holes from dark and bright fields to carry out the analysis.

The results presented in Table 1 indicate that the principal strains
determined from fringe values obtained at the hole edge are somewhat lower
than those obtained theoretically or by using other experimental means.

The information from the 2a line is very close to those other values.

As already mentioned, the results for the disk were obtained at the
beginning of the investigation using a less sensitive material. As the
coating was applied to only one side of the disk, some bending effect was
present. The results are found to deviate from the theoretical ones

slightly more than the ones given in the Table for the ring.

s i 2, adbinitct




a)

b)

c)

d)

e)

COMMENTS ON THE HOLE AND STRIP METHODS

at about the same time by 0'Teagan

developed by Galster . It consists in the transformation of the

i

The following points should, however, be borne in mind while commenting

on the values presented.

Some of the measurements were taken at points at which the strain
gradients were very high, to evaluate the method under less

favorable conditions.

Measurements were all made in the presence of residual stresses. This
also increases the difficulties since any error in the estimation of
the residual stresses will lead to an error in the determination of
the principal strains. The use of polycarbonate coatings with the
proper reflecting surface will increase the precision in this respect.
The method of using information taken from the 2a line leads to
satisfactory results. A closer analysis of the original paper(z)
indicates that it would be better to take inside the field infor-
mation at points located at a distance 1l.4a from the center, rather
than at points located at a distance 2a from the center.

Additional information along the two axes of symmetry can be obtained
by the use of contour-equidensity film. This should improve the
precision further. PReference to the use of this method can be found,

for instance in(lo).

The maximum strains taking place in the specimen used in this investi-
gation, is of the same order as the strains that can be expected in

engineering structural components.

An idea, similar to the one developed in this paper was introduced
(11) (12)

and by Moench and later further

(13)




continuous coating in a series of parallel strips separated by slots of

about the same width as the strips. This method yields ey in the direction
of the sirip over the field, in a discontinuous manner along x. A variation
of the method consists in having the separatioi. oetween strips to operate
also as a coating, but of smaller height. This lower coating would give

the information (e1 - 52) corresponding to a continuous coating, and the
higher strips would give Ey

It is much easier to determine the axis of symmetry of the fringe
pattern around the hole than the isoclinic fringes in the discontinuous
strip field and the direction of the principal strains can therefore be
determined with higher precision using the hole method. Since the strip
method requires the knowledge of the isoclinic angle to determine the
second principal strain, whereas the strains are determined directly using
the hole method, the precision of the hole method is also higher for the
determination of the individual values of the principal strains.

There are limitations to the use of photoelastic coatings when the
state of stress in the material under it changes with time. Some of these
limitations are reviewed in(lA). But whereas the disturbance introduced by
the presence of strips in the field makes impossible any dynamic application,

it is felt that the hole method can be used to determine strains in many

quasi-static applications.
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TABLE 1

COMPARISON OF STRAINS OBTAINED USING SEVERAL METHODS ON A CIRCULAR RING

AND CIRCULAR DISK UNDER DIAMETRAL COMPRESSION

PRINCIPAL STRAINS

POINT SOLUTION € X 106 €y X 106 (el - 82) 106
RING THEORETICAL <7 213 ~1325 1538
{% = 0.61 HOLE EDGE 75 -1083 1158
e =0° 2a LINE 256 -1392 1648
CONTINUOUS COATING £ - 1513
RING THEORETICAL {7 196 -215 411
{% = 0.83 HOLE EDGE 151 ~267 418
0=0° 2a LINE 187 -241 428
CONTINUOUS COATING ~ - 394
RING |  ExPERTMENTAL(®) 481 -982 1463
% = 0.61 HOLE EDGE 114 -998 1112
0 = 45° 2a LINE 600 -1032 1631
CONTINUOUS COATING - - 1544
DISK THEORETICAL (7 824 ~1347 2171
§= 0 HOLE EDGE 692 -1059 1751
0 = 90° 2a LINE 625 -1282 1907
CONTINUOUS COATING - - 2069
SOLUTION INCLINATION OF PRINCIPAL STRAINS
RING ExPERTMENTAL (20 7"
% = 0.61 HOLE METHOD 69°
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FIG. 1 DETERMINATION OF o, AND o, AS A FUNCTION OF o, AND
o AND o, AND og USING A CIRCULAR HOLE IN THE BIAXIAL

STRESS FIELD
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FIG, 3 CIRCULAR RING WITH TWO TYPES OF PERFORATED COATINGS.
SUBJECTED TO DIAMETRAL COMPRESSION
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ISOCHROMATICS ASSOCIATED WITH RESIDUAL STRESSES. ARCUND
A HOLE IN A COATING, LOCATED AT A DISTANCE (r/b = 0.61]

FROM THE CENTER OF A CIRCULAR RING
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FIG. 6

ISOCHROMATICS AROUND A HOLE, IN A COATING ON THE
HORIZONTAL AXIS (r/b=0.,61) OF A CIRCULAR RING
SUBJECTED TO VERTICAL COMPRESSION (LIGHT FIELD)
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FIG., 9 [SOCHROMATICS AROUND A HOLE IN A COATING ON THE HORIZONTAL
AXIS (r/b=0.61) OF A CIRCULAR RING SUBJECTED TO VERTICAL
COMPRESSION (DARK FIELD)
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FIG, 11 DEVICE FOR LOCATION OF POINTS ON TWO AXES OF SYMMETRY
AROUND THE HOLE IN THE COATING
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